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Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power con-
sumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and
easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost
function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array
of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the
algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cm� volume located 1.5 cm above the top of the magnets and
homogeneous to 32 200 ppm over a 7.6 cm� volume. This regime is adequate for MRI applications. We demonstrate that the homoge-
neous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with
adjustable “sensitive volumes.”

Index Terms—Least-squares optimization, magnetic devices, magnetic resonance, magnetostatics, nuclear magnetic resonance.

I. INTRODUCTION

DURING the last decade, a wide range of transportable,
portable, and single-sided nuclear magnetic resonance

(NMR) sensors and methodologies have been developed
[1]–[12]. The interest in such devices, as potential standalone
or complementary alternatives to conventional magnetic reso-
nance imaging (MRI), arises from the obvious advantages of
lower costs, portability, access to immovable arbitrary-sized
objects, and scanning in the field. Mobile NMR measurements
of, for example, relaxation times or MRI are currently con-
ducted for applications within the materials sciences [13]–[20].
Recently, advances in methodology and hardware construc-
tion have allowed for high-resolution NMR spectroscopy in
one-sided, portable NMR systems [21], [22].

Portable systems feature strong magnets that produce either a
remote homogeneous field or some type of natural gradient. The
field homogeneity and size of the homogeneous region come
at the expense of the size of these systems or the overall field
strength. For example, the NMR-MOLE is a 6 kg, 20 cm diam-
eter magnet array that produces a 6.2 cm sensitive volume of
15 000 ppm homogeneity and a field strength of 767 G located
1 cm away from the surface of the instrument [11]. By compar-
ison, the original NMR-MOUSE weighs 2.5 kg, has a 3.1 cm
height and a 5.5 cm diameter, and produces a field strength
of 5000 G at the surface, but the sensitive volume is a thin,

mm mm mm slice in the center of the magnet [2].
Complementary to and independent of the magnet designs,

several ex situ NMR methodologies were developed recently
[23], [24] with the aim of relaxing hardware design and con-
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struction requirements in order to produce larger effective sen-
sitive volumes. Such methodologies are based on the applica-
tion of time modulated RF and static field gradient pulses that
generate spatially dependent phase corrections, without altering
the chemical shift signature of the sample under study. For in-
stance, ex situ hardware matching [21], [23], [25] corrects the
spin phases using crafted radio frequency (RF) fields whose
spatial gradient matches that of the static field gradient. Shim
pulses [24] achieve similar phase corrections by modulating the
imaging gradients during the application of RF pules without
needing a particular spatial variation of the RF field. While these
techniques help in correcting spin dephasing to some extent, and
may improve the apparent homogeneity of a magnet, a relatively
homogeneous magnet design is still a required starting point for
individual applications.

We introduce a permanent-magnet design method which is
simple in concept and implementation, in the sense that it can
easily be programmed on a computer and optimizations are pro-
duced in a few minutes. The user specifies a target field over a
volume, and the algorithm outputs a globally optimal arrange-
ment of dipole sources based on desired tradeoffs between de-
sign efficiency and accuracy. This approach ultimately yields
optimal magnet rod sizes and orientations. Such magnet rods
are nowadays available at low cost from many commercial ven-
dors in several different sizes. Moreover, their assembly as el-
ements of an array is far less dangerous than the gluing of per-
manent-magnet (PM) blocks.

II. THEORY

In this section, the general least squares problem that mini-
mizes the norm squared of the difference between the trial and
target fields is described. A more compact, but less intuitive,
version is given in the Appendix.

To generate a field that best matches a target field, ,
in the sense of least squares, one minimizes the volume integral
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of the norm squared of the difference between the fields over the
region of interest (ROI)

(1)

We describe the trial field , as a linear combination of basis
fields

(2)

For our particular optimizations, we use bases of two-dimen-
sional infinitesimal dipoles. A linear combination of an and a

oriented dipole centered at the appropriate position fully de-
scribes each magnet’s strength and orientation, and an infinitely
long cylinder uniformly magnetized perpendicular to its axis
will reproduce this field. The cylinder’s field strength can be
scaled to match the dipole’s without changing the shape of the
field outside of it by scaling its radius as the square root of the
dipole’s strength. The field of such a cylinder magnetized along
the x-axis is given in cylindrical coordinates by (3), where is
the remanent field of the PM block, is the cylinder’s radius,
and and are the radial and angular coordinates, respectively

(3)

Physical implementations employing rod lengths significantly
longer than the maximum distance of any rod center to the target
field will reproduce these designs within a scaling factor of
the field strength at a small loss of homogeneity as shown in
Section III-B.

By substituting (2) into (1), we get

(4)

where is a scalar, is an symmetric matrix and
an long vector, being the number of basis fields, and these
are defined by the appropriate overlap integrals where is the
volume of the target region:

(5)

To determine the extrema with respect to variations in the
coefficients , we differentiate (4) with respect to and use
the fact that is a symmetric matrix to get

(6)

Setting (6) equal to zero for all possible yields

(7)

If is not singular and hence the basis fields are linearly inde-
pendent, the solution is optimal. This point, when it exists, must
be a global minimum with respect to because the original
cost function, (1), is bounded from below and is quadratic with
respect to the optimized coefficients. If is an ill-conditioned
or even a singular matrix, or yields unrealizable or inefficient
designs then matrix regularization or constrained optimization
can overcome these issues.

A. Optimizing for Dipole Orientation: Applying Multiple
Quadratic Equality Constraints

Tasks such as determining optimal magnetization angles
given fixed magnet block shapes, positions, and strengths; or
reproducing a different field with a pre-existing adjustable
magnet using our rod implementation scheme, require calcu-
lating optimal magnetization orientations given fixed strengths.
Here, (4) must be optimized under the equality constraints, (8),
where each is a positive scalar fixing a rod’s magnitude
and the matrices are symmetric and positive definite
where is the number of basis fields

(8)

In our application, has the diagonal elements corresponding
to the th rod’s and dipole fields set to 1 with the remaining
elements set to 0.

The case of a single quadratic constraint has been worked
out for various applications, see for example [26]. The case of
arbitrarily many quadratic constraints adds some complications,
but this more general case is also tractable. Following Golub
[26], we determine the constrained optimum via the method of
Lagrange multipliers. The Lagrangian is

(9)

where are the Lagrange multipliers. The
extremum of (9) is attained when its gradient with respect to
is zero, and is given by

(10)

where we have used the fact that and are symmetric, pos-
itive definite matrices. Since the form of the Lagrangian is the
same as our original cost function, this is still (7) but with a mod-
ified matrix.

Solving for the Lagrange multipliers by substituting the solu-
tion for into the constraints (8) yields an expression that does
not have a trivial solution. A Newton–Raphson algorithm can
be applied to solve for . We approximate optimal coefficients,
(10), by substitution into the constraints, (8), to first order in .
Specifically, the matrix equation can be approxi-
mated by for small values of . Thus, to first order in ,
the optimal coefficients are

(11)

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 13, 2009 at 19:27 from IEEE Xplore.  Restrictions apply.



4584 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 12, DECEMBER 2008

Substituting (11) into (8) and retaining only the zeroth and first
order terms in , our constraints can be approximated by

(12)

The solution for now reduces to solving a matrix equation

(13)

where the components are

The obtained is not an exact solution, so the constraint is
not immediately satisfied. To improve the compliance, the con-
straint methodology is applied iteratively to the cost function
modified by the previously obtained Lagrangian, (14)

(14)

In our application, we found that this iterative technique consis-
tently converged.

To match to a particular target field, we wanted to fit to the
shape of the vector field rather than its particular magnitude, as
in general one will not know the specific strength of the homo-
geneous region that a magnet can best produce. With equality
constraints placed on the coefficients, their overall magnitude
cannot adjust to best match the strength of the target field. This
flexibility may be retained for quadratically constrained opti-
mizations by placing a variable scalar term in the target field
overlap vector , substituting it with , and subsequently de-
termining the optimal value for . With this substitution, the it-
erative first-order equation for becomes

(15)

The general solution (16) follows if is decomposed into the
partial solutions for the Lagrange multipliers and as de-
fined in (16)

(16)

The optimal match occurs when the original cost function is
minimally perturbed so that the optimal solution obeys the con-
straints, and hence when is minimized with appropriately de-
fined constraint matrices . By explicitly writing out the norm
of as a scalar product of its solution and differentiating with
respect to the field scalar, , the optimum is attained for

(17)

Equation (17) has no real solutions when . This
condition would imply that an infinitely strong field would be
optimal, a physically unrealistic situation given the application
of finding optimal dipole orientations that matches a particular
field. However, this condition can nonetheless arise in optimiza-
tions, and implementations of this technique should be careful
to handle this condition.

III. SIMULATIONS

We first verify the present technique in the context of de-
signing ring magnet configurations, the solution of which is the
well-known Halbach dipole [27]. We then apply the method-
ology to the design of a single-sided magnet array for use in mo-
bile NMR. For this single-sided design, we demonstrate how to
alter the field profile by only changing the rod orientations, and
compare the effects of using finite versus infinite length rods for
producing a variety of target fields using the quadratic equality
constraint version of our optimization. All optimizations and
field plots were computed with Matlab (The Mathworks, Natick,
MA). The initial solutions for the proposed single-sided NMR
array were checked using Comsol33’s magnetostatics module
(The COMSOL Group, Stockholm, Sweden) for consistency.

A. Ring Magnets

For ring-shaped arrays of magnets, an optimal solution for the
magnetization is the Halbach dipole array [27]. This provides a
check of our method against a known solution to this problem.
The magnitude and orientation of a ring of 16 PM elements,
were optimized to reproduce a unit target field, , over
both a circular and a cross-shaped region of interest to test the
effects of varied regions of interest. Fig. 1 illustrates the results
from the direct application of (5) and (7), along with the analyt-
ical Halbach dipole configuration approximated with 16 magnet
elements for comparison.

The optimization over the circular and cross-shaped regions
show a remarkable similarity to the actual Halbach dipole con-
figuration with respect to their fields and optimal magnetiza-
tions. These matches require an appropriate choice of the target
field’s region of interest and/or the use of matrix regularization,
and yield designs with smaller homogeneous regions than the
Halbach dipole that are within a part per ten thousand of the
target field strength. There is also a 1% and 12% reduction in
field strength relative to the Halbach dipole for the circular and
cross-shaped target regions, respectively. Thus, this classic de-
sign, originally derived using analytical arguments [27], can al-
ternatively be obtained using this relatively simple numerical
method at a small cost in performance with respect to homo-
geneity and field strength.

The size of the circular target region had to be within a cer-
tain range (its radius had to be between about 60% to 90%
that of the dipole positions) to produce designs resembling the
Halbach dipole without matrix regularization. To obtain a Hal-
bach-like design from the cross-shaped target region, the opti-
mization matrix was regularized by adding the identity matrix
to it in order to eliminate the very small negative eigenvalues
from its diagonalization.
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Fig. 1. Optimal ring arrays of magnet rods that produce the uniform magnetic field, � � � � over their central regions. The fields are calculated assuming
infinitely long rods, each with uniform remanent fields of 1.3 T. The homogeneity of each field’s magnitude within parts per hundred (pph), parts per thousand
(ppt), and parts per ten-thousand (pptt) are indicated by the shaded regions. The circles indicate rod placement and sizes, and the arrows indicate the orientation of
each rod’s magnetization. We optimized using the presented technique over circular and cross-shaped regions as indicated by the unmasked areas (masked areas are
indicated by crosshatching) and included the Halbach dipole solution for comparison. For both target regions, we obtain solutions with rod sizes and orientations
similar to the Halbach dipole.

Fig. 2. Optimization parameters for the initial design of a single-sided magnet
for NMR. The target region for a homogeneous field is indicated by the white
rectangle and the region for field minimization (field zeroing) by the hatched re-
gion. Circles represent possible dipole positions, where a possible combination
of 4 dipoles obeying the appropriate symmetry for selection are shaded. The
schematic illustrates the xy plane of the system, where the rods producing the
dipole fields extend to infinity along � .

The difference in homogeneity between the Halbach and nu-
merically optimized designs differ on the order of parts per ten
thousand of the target field’s strength and likely arise from nu-
merical errors in calculating matrix terms and the matrix inverse.
Deviations of this order of magnitude are not surprising given
the optimization matrices involved are ill-conditioned, while the
Halbach design comes from an exact analytical solution [27].
Practically, deviations on this level are not too important as vari-
ations in actual magnet blocks would cause larger variations in
the field. Nonetheless, these variations indicate that the method
requires improvements if one wanted to optimize for better ho-
mogeneities. Furthermore, analytically the matrices cannot have
negative eigenvalues as the cost function is bounded from below,
yet the numerically calculated matrix for the cross-shaped target
region often does. This indicates that numerical errors can have
significant qualitative effects, and leads to the need for matrix
regularization.

B. Design of a Single-Sided NMR Magnet

We now demonstrate an application to the design of a
portable, single-sided MRI sensor. A series of unconstrained
optimizations identified an optimal magnet geometry and
orientation of the magnet rods, which was then characterized
by finite-element modeling. Subsequent optimizations demon-
strate that sensitive volume can be moved by simply rotating
the magnet rods.

For the initial optimization, the optimal dipole strengths and
orientations were optimized for a series of possible placements
of four dipoles via the least squares optimization method pre-
sented. The optimal dipole positions were chosen by selecting
the best of these possible arrangements. Algorithms 1 and 2 de-
scribe the optimization scheme. Fig. 2 illustrates the possible
dipole locations, the target-field region, and the field zeroing
region.

Algorithm 1 Determining the appropriate weighting for the
“field-zeroing” region

1: Choose a representative set of dipole positions .

2: Calculate the target field matrix and vector, and , and
the field zeroing matrix from (5).

3: repeat

4: Appropriately set or adjust the scaling factor for the field
zeroing region, .

5: Calculate the effective cost function to be minimized.
, .

6: Determine the optimal coefficients, .

7: until The homogeneity falls within the desired range.
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Fig. 3. The optimal magnet design implemented with 18 cm long magnet rods,
each with a uniform remanent field of 1.3 T, and modeled using Comsol33. The
magnitude of the magnetic field is plotted over the slice bisecting the magnetic
rods over a range of 550 to 710 G with off-scale regions in white. The magnet
rods are indicated by the gray cylinders and the orientation of their magnetiza-
tion by the arrows.

Algorithm 2 Global Search: Optimal Positions
of the Dipole Array

1: Determine the appropriate zero-field weighting, as in
Algorithm 1.

2: Determine the distinct sets of dipole positions, , to
be tested.

3: for all do

4: Calculate the target field matrix and vector ( and ) and
the zero-field matrix where from (5).

5: Calculate the effective cost function to be minimized.
, .

6: Determine the optimal coefficients, .

7: Calculate the approximate homogeneity, , the
implementation’s field strength, and its resilience to
variations,
and where
is the cost function in (4) for the main target field.

8: end for

9: Rank the systems for optimal homogeneity, efficiency and
stability.

10: Choose the best compromise system.

Dipole orientations and strengths were optimized for a main
target field of unit strength and oriented parallel to the plane

containing the magnets.1 An additional optimization matrix and
vector based on a zero target field over the field zeroing region
were added at a small scaling factor determined by Algorithm 1

to the main target field’s optimization matrix
and vector before calculating the optimal coefficients to make
the inverted matrix less ill-conditioned and improve the design’s
efficiency. To maximize design efficiency and maintain reason-
able homogeneity, we used the largest possible scaling factor
that kept the homogeneity to 1 part per hundred, which is
comparable in magnitude to the performance of previously pub-
lished systems [11], [12], [28], [29].

From this series of arrangements, each with optimized dipole
strengths and orientations, the best in terms of homogeneity,
field strength, and stability was selected to obtain optimal dipole
positions. The homogeneity is calculated as the RMS deviation
of the field from the target field, which is where is
our cost function from (4) and is the area for the main target
field. Equation (3) determines the field strength at the center of
the target region for the rod radii and orientations corresponding
to the optimal coefficients. The stability of a set of dipole posi-
tions is quantified by the magnitude of the gradient of the cost
function with respect to changes in dipole position and magne-
tization ( and , respectively), and is calculated by
finite differences between the position’s optimal design and its
perturbations.

The best arrangement from our search is illustrated in Fig. 3,
and these optimal dipole positions are also shaded in Fig. 2 to
view it in relation to the original optimization parameters. The
construction, performance, and application of this system will
be presented in a future publication. Since the original optimiza-
tion applies to infinitely long rods, we perform finite-element
modeling of its finite rod implementation to validate the perfor-
mance of this method (see Fig. 3). The dipoles are implemented
with 18 cm long rods2 so that the length of any one rod is signif-
icantly longer than the distance of its center to the target field. In
this case, the rod lengths are slightly more than 3 times longer
than their distance to the target region. The optimal coefficients
and available space lead to outer and inner rod radii of 2 cm
and 1 cm, and orientations off from coplanar by 24.1 and 3.5 ,
respectively, as illustrated in Fig. 3. A Comsol33 simulation in-
dicates that this configuration with rods whose remanent fields
are 1.3 T yields a 640 G, 1.9 cm sensitive volume with a 16 100
ppm homogeneity, or a 7.6 cm sensitive volume with a 32 200
ppm homogeneity.

Finally, we fine tune the rod orientations of the previously
optimized design to adjust for the effects of finite rod lengths,
and demonstrate how this design can produce a movable sensi-
tive volume by rotating the magnet rods with a series of least-
squares optimizations subject to multiple of quadratic equality
constraints (see Section II-A). The target fields are identical in
size (a 2 cm 1 cm slice in the plane bisecting the rod axes)
and orientation to the original optimization, but vary
in their distance from the array to produce a movable sensitive
volume [see Fig. (4i)]. The optimizations accurately model and

1The target field’s orientation allows for the use of RF-coils with greater sen-
sitivity.

2While 18 cm long rods are hard to obtain and impractical to use, they can be
realized by aligning two collinear 9 cm long rods.
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adjust for finite rod lengths, by using the basis fields of finite
rods (numerically evaluated assuming ), and re-
peats these optimizations using an infinite rod basis for compar-
ison. The equality constraints are necessary to use with a finite
rod basis, as field shape, in addition to magnitude, varies with
the rod’s dimensions. Each rod’s orientation is then modeled
by the superposition of two basis functions: one for magnetiza-
tion along and one along . The variations are restricted to rod
rotations only, by constraining the sum of squares of the pair
of coefficients representing each rod. Since the magnitude of
the coefficients are fixed and unable to adjust to the strength of
the target field, the optimization adjusts the target field strength
to minimize the perturbation to the original cost function. The
technique’s implementation is specified in Algorithm 3.

Algorithm 3 Optimizing With Multiple Quadratic Constraints

1: Generate the constraint matrices and scalars, and .

2: Calculate the target field matrix and vector, and ,
from (5).

3: while the constraints (8) are not obeyed. do

4: Calculate the first order Lagrange multiplier solution
matrices and vectors: , and from (13).

5: Find the first order approximations to the Lagrange
multiplier solution vectors and from (16).

6: Determine the relative field-strength which allows for
the minimal applied constraint from (17).

7: if then

8: Quit. Inform the user of the condition and return the
previous iteration’s solution for and

9: end if

10: Calculate the Lagrange multiplier, , as in (16).

11: Add in the Lagrange multipliers into the solution matrix,
. See (14). {This new matrix now replaces the previous

one for future loop iterations.}

12: Calculate the optimal coefficients. .

13: end while

Fig. 4 details the constrained optimization’s results for a
range of target fields for both 18 cm and infinitely long rod
bases. This optimization yields the appropriate orientations of
finite rods to give homogeneous regions like those in Fig. (4i)
at different distances from the array. However, very close target
regions ( 2.9 cm) exhibited dramatically worsened homo-
geneities, as shown in Fig. (4iii), where the algorithm fails
to yield homogeneous solutions, and gives chaotic behavior,
as seen in the plots of optimal field strengths, Fig. (4ii), and
optimal angles, Fig. (4iv). Arrangements with the highest field
strengths and best homogeneities occur around a target field
distance of 3.5 cm (labeled b). This coincides with the original
target region, for which the rod sizes and positions were opti-
mized. Further out target regions correspond to regions where

the fields of the individual rods weaken, so it is natural that
the fields of the optimal solutions also weaken. Furthermore,
the rods’ relative sizes and positions cease to be optimal for
more distant sensitive volumes, and the homogeneity tends to
worsen.

Fig. (4ii)–(iv) also provides a way to compare the use of the
infinite rod basis to its finite length implementation. Replace-
ment with the 18 cm long rods effectively leads to the sensitive
volume’s strength to be scaled down, a small decrease in homo-
geneity, and very similar optimal rod orientations which differ
more for distant sensitive volumes. Thus, when the algorithm
is able to produce homogeneous regions and the target region
is reasonably close ( 4.5 cm), implementation of the infinite
rod design with finite length rods yields the same design with
a small cost to homogeneity and a rescaled sensitive volume
strength. The differences become more pronounced at more dis-
tant sensitive volumes where the infinite rod approximation be-
comes worse. Thus, the field scaling factor ( 0.5 at 3 cm and
0.4 at 10.5 cm) decreases with distance, and the optimal angles
become significantly different past 4.6 cm though only for the
inner rods in this example.

IV. DISCUSSION

We presented a magnet design technique based on the least-
squares fit of a target field and demonstrated its application to
the design of ring magnets and a single-sided NMR magnet. The
optimization finds a global optimum for the sizes and orienta-
tions of an array of cylindrical magnets, whose potential adjusta-
bility offers greater experimental flexibility and several advan-
tages for implementation. The optimization itself is simple and
compares well to similar methods, but requires appropriate ap-
plication to yield useful results.

We demonstrated that this technique leads to good perma-
nent magnet designs. Its reproduction of designs very similar
to the Halbach dipole array, even with a cross-shaped target
region, confirms that it leads to reasonable optimal solutions.
The technique also produced a single-sided NMR magnet de-
sign with good performance in terms of the balance between
field strength, homogeneity, and sensitive volume location, and
demonstrated that this design can have the unique feature of a
variable sensitive volume location.

The overall approach leads to designs based on cylindrical
magnet rods, and, though this can lead to weaker field strengths
due to not filling a maximal amount of volume with magnetic
material, these designs have several significant advantages.
Such magnet rods are commercially available over a range of
sizes, but more importantly allow for significant adjustments
by rotating the rods with an appropriately designed frame. An
adjustable frame allows the rods to be initially oriented for an
easier assembly and to be adjusted from their theoretically op-
timal orientations to compensate for variations in the magnets.
With accurate field maps of the actual rods, these corrections
could be directly calculated. In our specific application, the re-
sulting adjustable sensitive volume gives greater experimental
flexibility: closer sensitive volumes for greater signal or further
out to probe deeper within the sample. Without this adjusta-
bility, previous magnets could only achieve this flexibility over
sensitive slices instead of over volumes [2].

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 13, 2009 at 19:27 from IEEE Xplore.  Restrictions apply.



4588 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 12, DECEMBER 2008

Fig. 4. Optimal magnet rod orientations for our optimal magnet design for a range of sensitive volume distances �� �, and for finite (18 cm) and infinite length rod
implementations with uniform remanent fields of 1.3 T. (i) Homogeneous regions plotted over the slice bisecting the magnet rod lengths produced by finite length
rods. The shaded regions indicate where the field’s magnitude varies within a part per ten and a part per hundred of the optimal target field strength. The array
produces slightly larger homogeneous regions for sensitive volumes near the original target region �� � ��� ���. (ii) Field strength of the sensitive volumes. The
finite length rods produce sensitive volumes with field strengths that are a fraction of their infinite length rod equivalents which decreases with distance (�50% at
� � ��� �� vs �40% at � � 	��� ��). (iii) Inhomogeneity quantified as the average magnitude of the difference between the actual and target field over the
target region normalized to the optimal target field strength. Sensitive volumes produced by the finite rods are slightly more inhomogeneous than for the infinite
length rods. The algorithm yields inhomogeneous solutions for � � 
�� �� for these target regions. (iv) Optimal rod orientations. The rod angles are illustrated
within the Magnet Arrangement portion of i. The optimal angles for the finite and infinite length rods match for homogeneous systems with � � ��� ��, indicating
a region where our finite rod implementation of 2D dipoles is effective.

Our approach is unique in comparison to other magnet opti-
mization techniques [8], [30]–[34] in that it combines a target
field optimization that locates a global optimum with a few
simple matrix calculations to the design of adjustable perma-
nent magnet assemblies. Other linear programing based tech-
niques like -norm [30], [31] have been applied to coil designs
and could provide an alternative optimization technique within
our implementation strategy. Our approach most closely resem-
bles the scalar potential approach [35] in that it finds an op-
timal linear combination of basis fields, but that technique in-
stead yields pole-piece based designs and optimizes the lower
order terms of an expansion of the target field instead of fitting
it over a volume.

While our optimization technique is simple to implement, it
requires the appropriate selection of magnet rods and their cor-
responding basis fields. The 2-D dipole basis is useful for the
initial optimization because its field has a simple analytical form
and the relative dipole magnitudes can be adjusted in their infi-
nite length rod implementation by changing their relative radii.
However, their finite-length rod implementations must have the
rod lengths significantly longer than the distance of any rod
center to the region of the target field. Subsequent optimizations
with a finite rod basis can help adjust for errors introduced in the
approximation, but these can only adjust their orientations since
quadratic equality constraints need to be used with this basis.
Any such quadratically constrained optimization requires mul-
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tiple iterations to correctly determine the Lagrange multipliers
and should optimize the target field strength so to minimize the
applied Lagrange multipliers because the optimal field strength
will vary depending on the basis and target field location. As
done in Section III-B, a series of these constrained optimiza-
tions with finite and infinite length rod bases can show where
the finite rod implementation causes more than just a rescaling
of field strength and a slight loss in homogeneity by testing a
range of target field distances or possible rod lengths. With a
range of target field distances, we demonstrated that with our
design significant errors occurred when some of the rod lengths
became less than 2.7 times longer than the distance of their cen-
ters to the target region,3 while also showing how to produce a
movable sensitive volume. A more direct comparison between
the infinite and finite length rod fields, while useful, is difficult
because the field within the plane bisecting the finite rod lacks
a simple analytical solution and the magnitude of its field is ra-
dially asymmetric unlike for the infinite rod case. Therefore, it
is simpler to test the practical effect on the array.

Matrix regularization techniques and efficiency-increasing
measures are often needed to ensure that the optimal designs
are reasonably robust and efficient, because the optimization
matrix is often ill-conditioned. In the case of optimizing
the ring array of magnet to the cross-shaped target field, the
original optimization matrix is poorly conditioned, but
with a matrix regularization consisting of adding the identity
matrix to its at a small scaling factor, the optimization still
nearly reproduces a Halbach like array. In the second set of
optimizations, the relative homogeneity and efficiency of the
optimized single-sided NMR magnet was controlled by adding
the optimization matrix for the field-zeroing region to the
main target field’s optimization matrix at a weighting that
gave the desired balance of field strength and homogeneity.
Thus, instead of obtaining optimal designs with very homoge-
neous, but weak fields, we could control the tradeoff between
homogeneity and field strength.

Finally, our optimization strategy leaves the dipole positions
in need of optimization. A global search over a fairly coarse
grid yielded a good one-sided MR magnet design, while slightly
denser grids did not yield significant improvements. To fine tune
dipole positions more computationally efficient strategies could
be used, potentially borrowing from the strategies employed in

-norm optimizations for magnet design [30].

APPENDIX A
OPTIMIZATION APPLIED OVER DISCRETE POINTS

The original cost function, (1), with the basis set expansion
directly applied to it is

(18)

where is the vector of linear weightings, is a matrix
whose columns represent different basis functions and whose
rows represent different components of the field, and is the
target field. If the minimization is over a discrete set of points

3We omit the effect of the rod radius becoming to large relative to length,
since physical considerations like avoiding rod overlap with each other or with
the target region will keep the rod radii significantly smaller than the distance
to the target field and hence rod length.

and the field’s components are Cartesian, the integral of
the norm becomes a sum of the square of the field’s vector
components

(19)

The sum over points can be combined with the sum over field
components to create a simplified matrix expression, (20), if we
let the rows of and span a more general space that sequen-
tially lists the field components of every point

(20)

The optimal solution here is the classic least-squares fitting
problem of linear algebra, for which there are many pre-existing
routines. The matrix is the same as the one used in the -norm
method to relate constraints placed on the field to constraints on
the optimal currents.

An experimental realization of the 4-elements cylindrical rod
design proposed in this paper is to appear in [36].
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